MATH 1010A/K 2017-18
 University Mathematics
 Tutorial Notes VI
 Ng Hoi Dong

Question

(Q1) Suppose $f:[0,2] \rightarrow \mathbb{R}$ is the continuous function defined by

$$
f(x)= \begin{cases}\left(x+\frac{1}{x}\right)^{-1} & , \text { when } 0<x \leq 2 \\ a & , \text { when } x=0\end{cases}
$$

(a) Find all the critical point(s) of f in $(0,2)$.
(b) For each critical point, identify whether it is a local maximum of f, local minimum of f, or neither.
(c) Find the value of the constant a.
(d) Find the absolute maximum and absolute minimum of f on $[0,2]$.
(Q2) Find the absolute extrema (if they exist) of the function $f:[-2,2] \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{ll}
x^{5}-5 x^{4}+5 x^{3}+1 & , \text { when }-2 \leq x \leq 1 \\
\frac{1}{x-1} & , \text { when } 1<x \leq 2
\end{array} .\right.
$$

(Q3) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
g(x)=\ln \left(\frac{1+|x|}{1+x^{2}}\right)
$$

for any $x \in \mathbb{R}$.
(a) Find $g^{\prime}(x)$ if $x \neq 0$.
(b) Find all local maximum point(s) (if any) of g.
(Q4) Define $f: \mathbb{R} \backslash\{ \pm 1\} \rightarrow \mathbb{R}$ by

$$
f(x)=\frac{x(x-2)}{|x|-1 \mid}
$$

for any $x \neq \pm 1$. Find all local minimum point(s) (if any) of f.
(A1) Note $f(x)=\left(x+\frac{1}{x}\right)^{-1}$ when $x \in(0,2)$ and $f(0)=0$.
(a) Then $f^{\prime}(x)=-\frac{\left(1-\frac{1}{x^{2}}\right)}{\left(x+\frac{1}{x}\right)^{2}}=\frac{\left(1-x^{2}\right)}{\left(x^{2}+1\right)}$ for any $x \in(0,2)$.

If $f^{\prime}(x)=0$ for some $x \in(0,2)$, we can solve that $x=1$ or $x=-1$ (rejected).
Hence, the only critical point of f on $(0,2)$ is $(1, f(1))=\left(1, \frac{1}{2}\right)$.
(b) There are two method:
(Method 1) Note that

x	$0<x<1$	$x=1$	$1<x<2$
$f^{\prime}(x)$	+ve	0	-ve

and hence, $\left(1, \frac{1}{2}\right)$ is a local maximum by first derivative test.
(Method 2) Note that $f^{\prime \prime}(x)=\frac{-2 x\left(x^{2}+1\right)-2 x\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}}=\frac{-4}{\left(x^{2}+1\right)^{2}}$ for any $x \in(0,2)$.
Then, $f^{\prime \prime}(1)=-1<0$ and hence $\left(1, \frac{1}{2}\right)$ is a local maximum by second derivative test.
(c) Since f is continuous at $x=0$, we have $\lim _{x \rightarrow 0^{+}} f(x)=f(0)=a$. That is

$$
a=\lim _{x \rightarrow 0^{+}}\left(x+\frac{1}{x}\right)^{-1}=\lim _{x \rightarrow 0^{+}} \frac{x}{x^{2}+1}=0 .
$$

(d) Note that f is continuous on $[0,2]$ and differentiable on $(0,2)$ with a critical point $\left(1, \frac{1}{2}\right)$.

Also note that $f(0)=a=0$ and $f(2)=\frac{2}{5}$. By comparing the value of f at $0,1,2$,
we know that absolute maximum of f is $\frac{1}{2}$ occur at $x=1$
and absolute minimum of f is 0 occur at $x=0$.
(A2) Note that $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=+\infty$, so f has NO absolute maximum.
Note that

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
5 x^{4}-20 x^{3}+15 x^{2} & , \text { when }-2<x<1 \\
-\frac{1}{(x-1)^{2}} & , \text { when } 1<x<2
\end{array} .\right.
$$

Solving $5 x^{2}(x-1)(x-3)=5 x^{4}-20 x^{3}+15 x^{2}=0$ on $(-2,1)$,
we have $x=0, x=1$ (rejected) or $x=3$ (rejected).
Note $-\frac{1}{(x-1)^{2}}=0$ has no solution on $(1,2)$,
hence the only critical point of f is $(0, f(0))=(0,1)$.
Compare $f(-2)=-151, f(0)=1, f(1)=2$ and $f(2)=1$,
we know absolute minimum is -151 occur at $x=-2$.
(A3) Note that

$$
g(x)=\ln \left(\frac{1+|x|}{1+x^{2}}\right)= \begin{cases}\ln \left(\frac{1+x}{1+x^{2}}\right) & , \text { when } x>0 \\ \ln \left(\frac{1-x}{1+x^{2}}\right) & , \text { when } x<0\end{cases}
$$

(a) Then we have

$$
g^{\prime}(x)= \begin{cases}\frac{1+x^{2}}{1+x} \frac{\left(1+x^{2}\right)-2 x(1+x)}{\left(1+x^{2}\right)^{2}}=\frac{1-2 x-x^{2}}{(1+x)\left(1+x^{2}\right)} & , \text { when } x>0 \\ \frac{1+x^{2}}{1-x} \frac{-\left(1+x^{2}\right)-2 x(1-x)}{\left(1+x^{2}\right)^{2}}=\frac{-1-2 x+x^{2}}{(1-x)\left(1+x^{2}\right)} & , \text { when } x<0\end{cases}
$$

(b) Solving $\frac{1-2 x-x^{2}}{(1+x)\left(1+x^{2}\right)}=0$ on $(0,+\infty)$,
we have $x=-1+\sqrt{2}$ or $x=-1-\sqrt{2}$ (rejected).
Solving $\frac{-1-2 x+x^{2}}{(1-x)\left(1+x^{2}\right)}=0$ on $(-\infty, 0)$,
we have $x=1-\sqrt{2}$ or $x=1+\sqrt{2}$ (rejected).
Note that we can have

x	$x<1-\sqrt{2}$	$x=1-\sqrt{2}$	$1-\sqrt{2}<x<0$	$x=0$
$g^{\prime}(x)$	+ve	0	-ve	we do not know (even the existence)
x	$0<x<-1+\sqrt{2}$	$x=-1+\sqrt{2}$	$x>-1+\sqrt{2}$	-
$g^{\prime}(x)$	+ve	0	-ve	-

Note that g is continuous on \mathbb{R} (why?) and differentiable on $\mathbb{R} \backslash\{0\}$.
By first derivative test, the only local minimum point of g is $(0, g(0))=(0,0)$.
(Q4) Note that

$$
\begin{aligned}
f(x) & =\frac{x(x-2)}{|x|-1 \mid} \\
& = \begin{cases}\frac{x(x-2)}{|x|-1} & , \text { when }|x|-1>0 \\
\frac{x(x-2)}{1-|x|} & , \text { when }|x|-1<0\end{cases} \\
& = \begin{cases}\frac{x(x-2)}{x-1} & , \text { when } x>1 \\
-\frac{x(x-2)}{1+x} & , \text { when } 0 \leq x<1 \\
\frac{x(x-2)}{1-x} & , \text { when }-1<x<0 \\
\frac{x(x-2)}{1+x} & , \text { when } x<-1\end{cases}
\end{aligned}
$$

Then

$$
f^{\prime}(x)= \begin{cases}\frac{x^{2}+2 x+2}{(x-1)^{2}} & , \text { when } x>1 \\ \frac{3 x^{2}-6 x+2}{(x+1)^{2}} & , \text { when } 0<x<1 \\ -\frac{x^{2}+2 x+2}{(x-1)^{2}} & , \text { when }-1<x<0 \\ -\frac{3 x^{2}-6 x+2}{(x+1)^{2}} & , \text { when } x<-1\end{cases}
$$

By solving $f^{\prime}(x)=0$ (please write the detail yourself), we can only get $x=1-\frac{1}{\sqrt{3}}$.
Then we draw the table

x	$x<-1$	$-1<x<0$	$x=0$	$0<x<1-\frac{1}{\sqrt{3}}$	$x=\frac{1}{\sqrt{3}}$	$1-\frac{1}{\sqrt{3}}<x<1$	$x>1$
$f^{\prime}(x)$	-ve	-ve	don't know	+ve	0	-ve	+ve

Note f is continuous on $\mathbb{R} \backslash\{ \pm 1\}$ and differentiable on $\mathbb{R} \backslash\{ \pm 1,0\}$.
By first derivative test, the only local minimum point of f is $(0, f(0))=(0,0)$.

